Ion-beam techniques

Electrostatic Accelerators

Van de Graaff accelerator Pelletron Tandem Van de Graaff

- **RBS:** Rutherford backscattering
- ERD: Elastic recoil detection
- PIXE: Particle induced x-ray emission
- PIGE: Particle induced gamma emission
- NRA: Nuclear reaction analysis
- STIM: Scanning Transm. Ion Microscopy
- SE: Secondary emission
- CH: Channeling

TECHNIQUE	ION BEAM	ENERGY (MeV)	
PIXE	H+	1 - 4	
RBS	⁴ He⁺, H⁺	≤ 2	
ERD	³⁵ Cl+, ²⁰ Ne+		
	³ He+, ⁴ He+	2 - 40	
NRA H+, D+		0.4 - 3	

Some literature on ion beam analysis

PIXE: A Novel Technique for Elemental Analysis

Sven A. E. Johansson and John L. Campbell Publisher: John Wiley & Sons, 1988

Materials Analysis using a Nuclear Microprobe

M B H Breese, D N Jamieson and P J C King Publisher: John Wiley & Sons, 1996

Handbook of Modern Ion Beam Materials Analysis

Edited by Joseph R. Tesmer and Michael Nastasi Publisher: Materials Research Society, Pittsburgh, Pa., 1995

Handbook of X-Ray Spectrometry

Edited by Rene E. Van Grieken and Andrzej A. Markowicz Publisher: Marcel Dekker, Inc., 2nd Edition, 2002

Experimental Setup for Ion Beam Analysis

Electrostatic Accelerator

Kinetic particle energy: $E_{kin} = q U = Ze U$

Van de Graaff: $U \le 10 \text{ MV}$ Tandem: $U \le 20 \text{ MV}$ Tandem Pelletron: $U \le 30 \text{ MV}$

Van de Graaff accelerator

Tandem van de Graaff accelerator

Pelletron charging system

Pelletron

Rubber belt is replaced by a chain of short conductive rods connected by insulating links. Can be operated at much higher velocity than a belt, so both the voltage and currents attainable are higher than a conventional Van de Graaff machine.

USP 8UD Pelletron tandem accelerator

Beam energies available at Tsukuba 12UD Pelletron tandem

TYPICAL ION BEAMS AND INCIDENT ENERGIES USED IN VARIOUS ION BEAM TECHNIQUES

TECHNIQUE	ION BEAM	ENERGY (MeV)	REMARK
PIXE	H+	1 - 4	Maximum sensitivity in atomic ranges 10 <z<35 75<z<85<="" and="" td=""></z<35>
RBS	⁴ He ⁺ , H ⁺	≤ 2	Non-Rutherford scattering becomes significant for energy >2 MeV
ERDA	³⁵ Cl+, ²⁰ Ne+ ³ He+, ⁴ He+	2 - 40	Mass of incident ion must be greater than that of target nucleus. ³ He+ and ⁴ He+ are used only for the measurement of H.
NRA	H+, D+	0.4 - 3	Reactions used include (p,g) (p,p'g), (p,ag), (d,p), (d,pg)

Proton Induced X-ray Emission = PIXE

Lund Institute of Technology - 1970

Bohr:

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \frac{Z^2}{n^2} = -\frac{e^2}{8\pi\varepsilon_0} \frac{1}{a_0} \frac{Z^2}{n^2} \approx -13.6 \frac{Z^2}{n^2} \text{ eV}.$$
$$\Delta E = E_{n_2} - E_{n_1} = \frac{me^4 Z^2}{8\varepsilon_0^2 h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right),$$

$$K_{\alpha}$$
-line
 $h_{V} = (2.48 * 10^{15} \text{ Hz})(Z - 1)^{2}$

Z		$E(K\alpha)$ (keV)
8	0	0.5249
20	Ca	3.69168
40	Zr	15.7751
70	Yb	52.3889
92	U	98.439

PIXE System (Harvard)

PIXE Spectra

PIXE microscope

Nuclear microprobe PIXE elemental maps from 400 mm x 400 mm scan over a section of a lung tissue taken from a patient suffered from hard metal lung disease:

PIXE features

All elements with Z > 14 (Si) (K α = 1.73998 KeV) can be analyzed. For instance in biological samples the concentrations of about 15 elements are normally determined simultaneously.

The method is **fast**. A typical irradiation lasts about **10 min**.

Highly sensitive: Concentrations of elements down to a few 100 ppb (10⁻⁸) can be measured.

The spatial resolution of the beam is 1 mm. The penetration depth in a solids: ~ 100 μm; allows determinations of elemental distributions or profiles

High accuracy: relative errors are between 1-10 %

Small-size samples > few mg

Non-destructive technique: This enables analyses of precious objects, e.g. ancient coins or paintings.

Competition to PIXE: Neutron Activation Analysis (NAA)

Neutron Activation Analysis

Gamma spectrum

Sensitivity (picograms)	Elements
1	Dy, Eu
1–10	In, Lu, Mn
10–100	Au, Ho, Ir, Re, Sm, W
100–1E3	Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, V, Yb
1E3–1E4	Al, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd, Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr
1E4–1E5	Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y
1E5–1E6	F, Fe, Nb, Ne
1E7	Pb, S

RBS - Rutherford Backscattering Spectrometry

ERD – Elastic recoil detection

Coulomb repulsion between high energy incident ions and target nuclei

RBS vs. ERDA

RBS

- Projectile is the detected particle M₁ << M₂
- Depth and mass information encoded on detected particle energy

• ERDA

- The target atom is the detected particle
 M₁>>M₂
- Depth information encoded on energy
- Isotopic identity carried directly by recoil

RBS (Rutherford Backscattering Spectrometry)

The recoil energy depends on the target mass and the path length

i.

RBS spectrum of Ta implanted in Si

ERD – Elastic recoil detection

M (projectile) > M (target)

Analysis of the distribution of light elements (H, He, etc) in solids

Nuclear Resonant Reaction Analysis (NRRA)

Nuclear reactions with sharp resonances are used to study impurity concentration in solids

Example: The reaction ${}^{1}H({}^{15}N, \alpha\gamma){}^{12}C$ equiv. ${}^{15}N(p,\alpha\gamma){}^{12}C$

NRRA with the ${}^{15}N(p,\alpha\gamma){}^{12}C$ reaction measures the hydrogen concentration

Resonances used in NRRA

Nucleus	Reaction	Q-value Q	Incidentenergy ¹⁾	Emitted	Cross-section	Mylar
		[MeV]	E_1	energy	$(d\sigma/d\Omega)_{NR}$	thickness
			[MeV]	E'1	[mb/sr]	Z_{sf}
2				[MeV]		[µm]
² H	2H(d,p)3H	4.032	1.0	2.3	5.2	14
² H	² H(³ He,p) ⁴ He	18.352	0.7	13.0	61	6
'He	'He(d,p)⁴He	18.352	0.45	13.6	64	8
°Li	⁶ Li(d,α) ⁴ He	22.374	0.7	9.7	6	8
'Li	$^{7}\text{Li}(p,\alpha)^{4}\text{He}$	17.347	1.5	7.7	1.5	35
⁹ Be	${}^{9}\text{Be}(d,\alpha)^{7}\text{Li}$	7.153	0.6^{2}	4.1	1	6
^{11}B	$^{11}B(p,\alpha)^{8}Be$	8.586	0.65	$5.57(\alpha_0)$	$0.12(\alpha_0)$	10
		5.65	0.65	$3.70(\alpha_1)$	$90(\alpha_1)$	10
^{12}C	$^{12}C(d,p)^{13}C$	2.722	1.20	3.1	35	16
¹³ C	$^{13}C(d,p)^{14}C$	5.951	0.64	5.8	0.4	0.6
¹⁴ N	$^{14}N(d,\alpha)^{12}C$	13.574	1.5	9.9(α ₀)	$0.6(\alpha_0)$	23
		9.146	1.2	$6.7(\alpha_1)$	$1.3(\alpha_1)$	16
¹⁵ N	$^{15}N(p,\alpha)^{12}C$	4.964	0.8 ³⁾	3.9	≈15	12
¹⁶ O	¹⁶ O(d,p) ¹⁷ O	1.917	0.90	$2.4(p_o)^{4}$	0.74(p _o)	12
10		1.05	0.90	$1.6(p_1)$	$4.5(p_1)$	12
¹⁸ O	$^{18}O(p,\alpha)^{15}N$	3.980	$0.73^{3)}$	3.4	15	11
¹⁹ F	$^{19}F(p,\alpha)^{16}O$	8.114	1.25	6.9	0.5	25
²³ Na	23 Na(p, α) 20 Ne	2.379	0.592	2.238	4	6
³¹ P	$^{31}P(p,\alpha)^{28}Si$	1.917	1.514	2.734	16	5)

Table 15-1. Nuclear reactions used for the detection of charged particles produced in nuclear reactions (from Götz and Gärtner, 1988).

¹⁾ For laboratory emission angle 150° with recoil nucleus in ground state (excited state)

²⁾ 0.6 MeV is optimum for Be in light Z matrix and 1.6 MeV for high Z matrix

³⁾ Maximum energy for Mylar to stop backscattered proton

⁴⁾ Measured at θ =164°

⁵⁾ range of α < range of proton

Emission channeling

Determination of the position of implanted ions

